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Abstract- Unsteady   radiative MHD heat and mass transfer nanofluid flow through horizontal stretching sheet under the action of 
strong magnetic field have been investigated. To obtain the non-similar coupled nonlinear momentum, energy and concentration 
equations, usual non-dimensional variables have been used. The explicit finite difference methods with stability and convergence 
analysis have been used to solve the obtained numerical solutions of the above problem. The stability and convergence analyses 
have been used for measuring the restriction of the useful parameters. The obtained numerical results have been presented 
graphically and discussed in details. Finally, qualitative comparisons of our results with   published results have been shown in 
tabular form. 
 
Index terms: Nanofluid ; MHD; Rotating System; Explicit Finite Difference Method; Stretching Sheet; Unsteady: Radiative 
 

——————————      —————————— 
 
1. Introduction 
Nanofluids have increased thermal conductivity at law nanoparticale concentrations, strong temperature 
dependent thermal conductivity, and non-linear increase in thermal conductivity with nanoparticale 
concentration, increase in boiling critical heat flux, these four novel characteristics of nanofluids makes them 
next generation of flow and heat- transfer fluids. For the heat and mass transfer nanofluids are three-to eight 
folds better than the conventional fluids. Day by day the applications of nanofluids are increasing. Nanofluids 
are frequently used in many Engineering works, scientific works and industrial works. Nanofluids are used in 
microelectronics, fuel cells, hybrid-powered engines, pharmaceuticals process, heat exchangers, vehicle 
thermal management , nuclear reactor coolant, in grinding, machining, in space  technology,  defense and 
ships, ceramic industries, plastic industries , Bio-medical technology etc. The word “nanofluid” was first 
invented by Choi [1] in order to develop advanced heat transfer fluids with substantially higher conductivities. 
Wang[2] studies the problem of three  dimensional fluid flow due to stretching flat plate.Putra et al.[3] examined 
that the water based nanofluid containing Al2O3 or CuO nanoparticals increased thermal conductivity two-to 
four folds.Na and Pop[4] studied an unsteady flow past a stretching sheet. Sattar and Alam[5] investigates 
unsteady free convection and mass transfer flow of a viscous , incompressible and electrically conducting fluid 
past a moving finite vertical porous plate with thermal diffusion. Buongiorno [6] studies the abnormal increase 
of thermal conductivity of nanofluids. The effects of thermal radiation and magnetic field on unsteady stretching 
permeable sheet in presence of free stream velocity is investigated Jangid and Tomer[7].Khan and pop[8] have 
been investigated the problem of laminar boundary  layer flow of a nanofluid past a stretching sheet.The 
boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition in presence of 
magnetic field and thermal radiation studied by Gbadeyan et al.[9].Ibrahim[10] investigated the radiation effects 
on MHD free convection flow along a stretching surface with viscous dissipation and heat generation. 
In the present work, radiative heat and mass transfer flow past a horizontal stretching sheet in a rotating 
system in presence of strong magnetic field. For solving the non dimensional coupled similar and non similar 
equations are solved by very well known, reliable and novel explicit finite difference method. Numerical results 
have presented for the range of Prandtl number, Lewis number, Local Reynold’s number and other well-known 
parameters which are taken arbitrarily for the fluid.       
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2. MATHEMATICAL MODEL OF FLOW 
Consider an MHD free convection and mass transfer flow of an electrically conducting viscous fluid through a 
stretching sheet 0=y in a rotating system. Considered the Cartesian coordinates x  , measured along the 
stretching surface and y is the coordinate measured normal to the stretching surface and z is the coordinate 
normal to the stretching   surface. The flow is assumed to be 
in the x direction.  
  The physical configuration and coordinate system are 
shown in Fig1.Initially the fluid as well as the stretching 
sheet is at rest, after the whole system is allowed to rotate 
with a constant angular velocity R about y -axis. Since the 

system rotates about y -axis, so we can take R′= (0,-Ω , 
0). The temperature and the species concentration at the 
plate are constantly raised from wT and wC  to ∞T and ∞C
respectively, which are there after maintained constant, 
where ∞T and ∞C  are the temperature and species 
concentration of the uniform flow respectively. A uniform 
magnetic field B is imposed to the stretching sheet ( 0=y ) 
to be acting normal to the x -axis  
which is assumed to be electrically non-conducting.  
We assumed that B= (0, 0B , 0) and the magnetic lines of force are fixed relative to the fluid. rq is the radiative  

heat flux acting along the x -axis. Under the usual boundary layer approximation, the MHD unsteady nanofluid 
flow and heat and mass transfer with the radiation and rotation effect are governed by the following equations.  
The continuity equation; 
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 The momentum equation in z -direction;  

ρ
συ wBu

y
w

y
wv

x
wu

t
w 0

2

2

2
2 −Ω−











∂

∂
=

∂
∂

+
∂
∂

+
∂
∂                                                                   (3)                                                 

            
The energy equation; 
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The concentration equation; 
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The initial and boundary conditions are; 

evrywhere   ,CC     ,    ,0   ,  ,  0 0 ∞∞ ======= TTwvaxUut w  
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0at    ,CC     ,    ,0,0 ,0  ,  0 ======≥ ∞∞ xTTwvut                                                       (6)                                     
                                        

     0yat           ,CC     ,    ,0   , ====== wwTTvbxUu  

∞→→→=== ∞∞ y as   ,CC     ,    ,0,0 ,0 TTwvu                                                     
Where ρ is  the density of the fluid , υ  is the kinematic viscosity , BD is the Brownian diffusion coefficient, TD

is the thermophoresis diffusion coefficient, α  is the thermal diffusivity , κ  is the  thermal conductivity , wu  is 

the stretching velocity, U   is the uniform velocity. The Rosseland approximation is expressed for radiative heat 
flux and leads to the form as,  

y
Tqr ∂
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∗ 4
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σ                                                                                                                                      (7)                                                                                                                                                      

Where ∗κ  is the mean absorption coefficient, ∗σ  is the Stefan-Boltzmann constant. The temperature 

difference with in the flow is sufficiently small. So that 4T may be expressed as a linear function of the 

temperature, then the Taylor’s series for 4T about ∞T after neglecting higher order terms, 
344  3 4 ∞∞ −≅ TTTT                                                                 (8)                                                                                                      

The dimensionless variables that are using in the equations (1)-(5) are as follows;
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The non-dimensional boundary condition’s are; 
,0    ,0      ,0   ,0    ,0      ,0 =====≤ CTWVUτ Everywhere                                                                                                     

,0    ,0      ,0   ,0    ,0      ,0 =====> CTWVUτ At X=0                                                                          (15) 

,1    ,1      ,0   ,0    ,1             ===== CTWVU At,Y=0                                                                                         

∞→→→=== YCTWVU    as   ,0    ,0      ,0   ,0    ,0                        (16) 
The non-dimensional quantities are;  
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 (Rotational Velocity), and 
a
b (Stretching Parameter).  

3. NUMERICAL SOLUTIONS 
In order to solve the non-similar coupled nonlinear, non-dimensional partial differential equations, by the explicit 
finite difference method, it is required a set of finite difference equations. For this, a rectangular flow field is 
chosen and the region is divided into a grid of lines parallel X, Y and Z axes, where X- axis is taken along the 
stretching sheet, Y and Z- axis are normal to the stretching sheet.  
Here we consider the height of the stretching sheet 
Xmax (=100) i. e. X varies from 0 to 100 and assumed 
Ymax(=25) as corresponding to ∞→Y  i.e.Y varies 
from 0 to 25.There are m(=125) and n(=125) grid 
spacing in the X and Y directions respectively as 
shown in Fig 2.It is assumed that YX ∆∆   , are 
constant mesh sizes along X and Y directions 
respectively and taken as follows, 

)250(2.0   and   ,)1000(8.0 ≤≤=∆≤≤=∆ YYXX   
with the smaller time-step, 005.0=∆τ . Let 

CTWVU ′′′′′   and   ,   ,   , denote the values of 

CTWVU   and   ,   ,   , at the end of the time step  
 
respectively. Using the finite difference approximation, 
 we obtain the following appropriate set of finite 
 difference equations; Let CTWVU ′′′′′   and   ,   ,   , denote the 

  values of CTWVU   and   ,   ,   ,  at the end of the time step respectively. Using the finite difference 
approximation, we obtain the following appropriate set of finite difference equations; 
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       Fig. 2.  Explicit finite difference system grid. 
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With initial and boundary conditions
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Here the subscripts i and j designate the grid points with X and Y coordinates respectively and the subscript n 
represents a value of time, ττ ∆= n  where n=0, 1, 2, 3……The stability conditions of the method are 
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Since from the initial condition, 0==== CTVU  at 0=τ and the consideration due to stability and 
convergence analysis is 1<cE  and 10.0≥R Hence convergence criteria of the method are 73.0≥rP , and

.10.0,10.0 ≥≥ tb NN  
4. RESULTS AND DISCUSSION 
In order to investigate the physical representation of the problem, the numerical values of temperature and 
species concentration within the boundary layer have been computed for different values of Magnetic 
parameter M, Radiation parameter R, Prandtl number rP ,Reynolds number eR ,Lewis number eL ,Brownian 

motion bN ,and Thermophoresis parameter tN ,Rotational velocity R′ ,To obtain the steady-state solutions of 

the computation, the calculation have been carried out up to non-dimensional time 80   to5=τ . It is observed 

that the numerical values of CTWU and,,  however, show little changes after 50=τ . Hence at 50=τ  the 
solutions of all variables are steady-state solutions. In Fig.3 it represents that the temperature distribution 
increases with the increases with the increase of radiation parameter and the temperature distribution 
decreases with the increase of Prandtl number. In Fig.4 the temperature distribution increases with the 
increase of Eckert number and the temperature distribution increases with the increase of Brownian motion 
parameter. The graphical presentation in fig.5 (a) shows that the temperature distribution increases with the 
increase of Thermophoresis parameter and in fig.5 (b) shows that the concentration distribution decreases with 
the increase of Lewis number.Fig.6(a) represents that at first the concentration distribution increases with the 
increase of Radiation parameter but after some time the concentration distribution decreases with the increase 
of  Radiation parameter again reverse effect is shown after some time. Fig.6 (b) represents that at first the 
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concentration distribution decreases with the increase of Prandtl number but after some time the concentration 
distribution increases with the increase of Prandtl number.Fig.7 (a) indicates that the concentration distribution 
decreases with the increase of Brownian motion parameter. Fig.7 (b) represents that at first the concentration 
distribution decreases with the increase of Thermophoresis parameter but after some time it is shown reverse 
effect. 

(a)    (b)   
 Fig.3.(a)The temperature profile for the different values of Radiation parameter and (b)Prandtl number. 

(a)    (b)  
Fig.4.(a) The temperature profile for different values of Eckert number and(b) Brownian motion parameter. 

 (a)  (b)  
Fig.5. (a) Temperature profile for different values of Thermophoresis parameter and (b) the concentration profile for the different 
values of Lewis number.                                                                                         
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(a)    (b)  
Fig.6. (a) The concentration profile for different values of Radiation parameter and (b) Prandtl number.                                                                                                      

(a)    (b)   
  Fig.7. (a) The concentration profile for different values of Brownian motion parameter and (b)Thermophoresis parameter.                                                                                           
 

5. CONCLUSIONS 

1. For increasing the Brownian and Thermophoresis parameter, temperature distribution increases where as 
the concentration distribution decreases for increasing the Brownian parameter. 
2. Thermal boundary layer thickness decreases for increasing Prandtl number and concentration boundary 
layer thickness decreases for increasing Lewis number. 
3. The MHD and Radiation effect through the boundary layer for both temperature and concentration has a 
great impact on flow pattern. As the Radiation parameter increases then the temperature distributions gradually 
increases while the reverse effects seen for concentration distributions.   
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